
Ethics in Information 

Technology, Second Edition 

Chapter 7

Software Development & Quality 
Assurance



Ethics in Information Technology, Second Edition 2

Objectives

• Why do companies require high-quality software in 

business systems, industrial process control 

systems, and consumer products?

• What ethical issues do software manufacturers face 

in making tradeoffs between project schedules, 

project costs, and software quality?



Ethics in Information Technology, Second Edition 3

Objectives (continued)

• What are the essential components of a software 

development methodology, and what are its 

benefits?

• What is a safety-critical system, and what actions are 

required during its development?



Ethics in Information Technology, Second Edition 4

Strategies to Engineer Quality 

Software

• High-quality software systems

– Operate safely and dependably

– Have a high degree of availability

– Required to support the fields of 

• Air traffic control

• Nuclear power

• Automobile safety

• Health care

• Military and defense

• Space exploration



Ethics in Information Technology, Second Edition 5

Strategies to Engineer Quality 

Software (continued)

• More and more users are demanding high quality 
software

• Software defect

– Could cause a system to fail to meet users’ needs

– Impact may be trivial or very serious

– Patches may contain defects

• Software quality 

– Degree to which software meets the needs of users



Ethics in Information Technology, Second Edition 6

Strategies to Engineer Quality 

Software (continued)

• Quality management 

– How to define, measure, and refine the quality of the 
development process and products

– Objective 

• Help developers deliver high-quality systems that 
meet the needs of users

• Deliverables

– Products such as: 

• Statements of requirements

• Flowcharts

• User documentation



Ethics in Information Technology, Second Edition 7

Strategies to Engineer Quality 

Software (continued)

• Primary cause for poor software quality 

– Developers do not know how to design quality into 
software 

– Or do not take the time to do so

• Developers must 

– Define and follow a set of rigorous engineering 
principles 

– Learn from past mistakes

– Understand the environment in which systems 
operate 

– Design systems relatively immune to human error 



Ethics in Information Technology, Second Edition 8

Strategies to Engineer Quality 

Software (continued)

• Programmers make mistakes in turning design 
specifications into code

– About one defect for every 10 lines of code

• Pressure to reduce time-to-market

• First release 

– Organizations avoid buying the first release

– Or prohibit its use in critical systems

– Usually has many defects



Ethics in Information Technology, Second Edition 9

Legal Overview: Software Product 

Liability

• Product liability

– Liability of manufacturers, sellers, lessors, and 

others for injuries caused by defective products

• Strict liability 

– Software maker held responsible for the injury

– Regardless of negligence or intent

– Must prove only that the software product is 

defective or unreasonably dangerous and that the 

defect caused the injury



Ethics in Information Technology, Second Edition 10

Legal Overview: Software Product 

Liability (continued)

• Strict liability

– No requirement to prove that the manufacturer was 

careless or negligent

• Or to prove who caused the defect

– All parties in the chain of distribution are liable

• Legal defenses used against strict liability

– Doctrine of supervening event; software was altered

– Government contractor defense; software specifications 

were provided by the government

– Expired statute of limitations; injury occurred a long time 

ago



Ethics in Information Technology, Second Edition 11

Legal Overview: Software Product 

Liability (continued)

• Negligence

– A supplier is not held responsible for every product 

defect that causes a customer or third-party loss

– Responsibility is limited to defects that could have 

been detected and corrected through “reasonable” 

software development practices

– Area of great risk for software manufacturers

– Defense of negligence may include

• Legal justification for the alleged misconduct

• Demonstrate that the user’s own actions contributed 

to injuries (Contributory negligence)



Ethics in Information Technology, Second Edition 12

Legal Overview: Software Product 

Liability (continued)

• Warranty

– Assures buyers or lessees that a product meets 

certain standards of quality

– Expressly stated 

– Implied by law

• Breach of warranty claim

– User must have a valid contract that the supplier did 

not fulfill

– Can be extremely difficult to prove

• Because the software supplier writes the warranty

• Example: Mortenson company vs. Timberline Software



Ethics in Information Technology, Second Edition 13

Software Development Process

• Large software project roles

– System analysts 

– Programmers 

– Architects

– Database specialists 

– Project managers

– Documentation specialists

– Trainers

– Testers



Ethics in Information Technology, Second Edition 14

Software Development Process 

(continued)

• Software development methodology

– Work process

– Controlled and orderly progress

– Defines activities and individual and group 

responsibilities

– Recommends specific techniques for accomplishing 

various activities

– Offers guidelines for managing the quality of 

software during various stages of development



Ethics in Information Technology, Second Edition 15

Software Development Process 

(continued)

• Safer and cheaper to avoid software problems at 

the beginning than to attempt to fix damages after 

the fact

– Identify and remove errors early in the development 

process 

• Cost-saving measure 

• Most efficient way to improve software quality



Ethics in Information Technology, Second Edition 16

Software Development Process 

(continued)

• Dynamic testing

– Black-box testing

• Tester has no knowledge of code

– White-box testing

• Testing all possible logic paths through the software 

unit 

• With thorough knowledge of the logic

• Make each program statement execute at least once



Ethics in Information Technology, Second Edition 17

Software Development Process 

(continued)

• Static testing

– Static analyzers are run against the new code

– Looks for suspicious patterns in programs that might 

indicate a defect

• Integration testing

– After successful unit testing

– Software units are combined into an integrated 

subsystem 

– Ensures that all linkages among various subsystems 

work successfully



Ethics in Information Technology, Second Edition 18

Software Development Process 

(continued)

• System testing

– After successful integration testing

– Various subsystems are combined 

– Tests the entire system as a complete entity

• User acceptance testing

– Independent testing

– Performed by trained end users 

– Ensures that the system operates as they expect



Ethics in Information Technology, Second Edition 19

Development of Safety-Critical 

Systems

• Safety-critical system 

– Failure may cause injury or death

– Examples

• Automobile’s antilock brakes 

• Nuclear power plant reactors

• Airplane navigation

• Roller coasters

• Elevators

• Medical devices



Ethics in Information Technology, Second Edition 20

Development of Safety-Critical 

Systems (continued)

• Key assumption 

– Safety will not automatically result from following the 

organization’s standard development methodology

• Must go through a more rigorous and time-

consuming development process than other kinds 

of software

• All tasks require 

– Additional steps

– More thorough documentation 

– More checking and rechecking



Ethics in Information Technology, Second Edition 21

Development of Safety-Critical 

Systems (continued)

• Redundancy

– Provision of multiple interchangeable components to 

perform a single function 

– In order to cope with failures and errors

• N-version programming

– Form of redundancy

– Involves the execution of a series of program 

instructions simultaneously by two different systems

– Uses different algorithms to execute instructions that 

accomplish the same result



Ethics in Information Technology, Second Edition 22

Development of Safety-Critical 

Systems (continued)

• N-version programming

– Results from the two systems are compared

– If a difference is found, another algorithm is 
executed to determine which system yielded the 
correct result

– Instructions for the two systems are often:

• Written by programmers from two different companies 

• Run on different hardware devices

– Both systems are highly unlikely to fail at the same 
time under the same conditions


